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EXECUTIVE SUMMARY 

Natural hazards (e.g., floods, scours, and earthquakes), environmental stressors (e.g., corrosive 
environments), or human-induced extreme events (e.g., fire and blasts) are the main sources 
that drive bridge deterioration or failure. A full or partial bridge failure may disrupt the 
transportation network connectivity leading to significant economic, social, or environmental 
impacts. Accordingly, maintenance and retrofit planning is required to minimize the risk of 
bridge failure and maximize the safety of transportation networks. However, this planning 
process is influenced by several sources of uncertainty that can affect the decision-making 
process. Quantifying and minimizing uncertainties associated with hazard prediction and 
deterioration modeling is essential for proper maintenance planning.  

Risk-based infrastructure management approaches provide the necessary mechanisms to 
evaluate the combined or cumulative effects of different hazards on the structural performance. 
These probabilistic approaches provide a systematic mechanism for considering different 
sources of uncertainties associated with bridge maintenance and management activities. An 
essential task in these procedures is to develop a reasonable prediction of the future occurrence 
rate associated with different hazards. In this context, climate change is expected to affect the 
long-term precipitation trends and alter the occurrence probability of riverine flooding. Other 
deterioration mechanisms, such as corrosion propagation, can also be affected by climate 
change. With the change in the deterioration patterns caused by climate change, the bridge 
ability to resist loading effects of other hazards (e.g., seismic events) may be reduced. 
Accordingly, it is essential to develop a methodology that can predict structural performance 
and failure risk under the combined effect of multiple hazards. 

This report presents a probabilistic framework for quantifying the risk of bridge failure under 
sudden or gradual deterioration mechanisms such as floods, flood-induced scours, and marine 
or freshwater corrosion. The effect of long-term climate changes on flood hazards and 
corrosion propagation are considered. Global Climate Models (GCMs) are used to predict 
future precipitation and temperature profiles. Downscaled precipitation and temperature 
climate data for the location of interest during the time span of 1960 to 2100 are adopted from 
Coupled Model Inter-comparison Project Phase 5 (CMIP5) archive. A hybrid conceptual-
metric tool is used to establish streamflow profiles based on the adopted climate datasets. 
Corrosion propagation rate and scour depth profiles are developed using the predicted 
temperature and streamflow profiles. The time-dependent corrosion propagation and scour 
predictions are then used to quantify the axial and lateral capacities of the bridge foundations. 
Point-in-time and cumulative probabilities of failure are estimated based on the lateral and 
axial performance functions in terms of resistance and load effects. Consequences of bridge 
failure considering direct (i.e., structural rehabilitation costs) and indirect sustainability metrics 
are employed to establish the time-dependent risk profiles. The proposed bridge failure risk 
quantification approach presented in this study is applied to an existing bridge in Oklahoma. 

Additionally, an integrated framework for establishing the optimum maintenance strategies 
considering climate change effects is introduced and discussed in this report. This framework 
is capable of minimizing the total life-cycle cost and providing an optimal maintenance plan 
for bridges under combined effects of different deterioration mechanisms.  
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1. INTRODUCTION 
Bridges are under deterioration due to various mechanical and environmental stressors. 
Hydraulic-related hazards (e.g., floods and scours), aggressive environmental conditions, and 
seismic events (i.e., earthquakes) are recognized as the most significant threats to the safety of 
bridges. In traditional risk assessment methods for structures susceptible to damage due to 
floods and other natural hazards (e.g., corrosion and seismic events), future hazard predictions 
are conducted using historic return periods and climate records. However, the recent increase 
in flood intensity in central-southern states indicates that the future hazard occurrence rate may 
not necessarily follow past trends. Accordingly, current design, assessment, and management 
methodologies should adapt to these changes in order to ensure the satisfactory performance 
of bridges under the combined or cumulative action of hazards. This project addresses this 
need by presenting a framework for optimum management of bridges susceptible to damage 
due to floods, and other gradual deterioration mechanisms (e.g., corrosion and fatigue). 
Downscaled climate data, adopted from the global climate models, are employed to predict 
future flood hazard at a given location. Probabilistic simulation is used to quantify the time-
dependent failure probability, which subsequently helps quantifying the long-term 
sustainability through the systematic integration of economic, social, and environmental 
metrics associated with bridge failures or interventions. These profiles can be next used to 
obtain optimum times and types of interventions required to extend the service life while 
maintaining the structural performance above prescribed thresholds.  

The increase in flood frequency and intensity, which may be attributed to the climate change, 
is adversely affecting the safety of our Nation’s bridges and imposing devastating 
consequences to our transportation systems and the communities which they serve. As an 
indication of the severity of this problem, the 2015 flooding in Texas and Oklahoma led to at 
least five reported complete or partial bridge failures (1). In 2017, Hurricane Harvey caused 
severe flooding which led to the failure of several bridges in Texas. This 2017 flooding in 
Houston, Texas was considered the third 500-year flood to occur within the preceding three 
years. These events highlight the extent of increase in the occurrence rate of high intensity 
weather-related extreme events. In order to prevent failure of bridges due to these extreme 
events, bridge design and management approaches should account for the increase in the 
hazard occurrence rates in affected states. Retrofit and maintenance activities should be 
optimally planned to reduce the failure risk and minimize the impact of bridge interventions 
on the economic, social, and environmental systems.  
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2. OBJECTIVES 
The main objective of the proposed research is to develop a sustainability-based framework 
for management of bridges under multi-hazard exposure. In more detail, the proposed research 
aims to: 

(a) Develop a comprehensive integrated tool to assess the risk of failure for bridges under 
multiple hazards. The tool is capable of integrating multiple hazards in a risk-based 
framework. Social, economic, and environmental sustainability measures are also 
included in the risk prediction.  

(b) Introduce a precise, yet computationally efficient probabilistic framework for 
quantifying the risk of bridge failure under climate change. The proposed approach is 
suitable for assessing the long-term risk of bridge failure under flood loads, as well as 
other climate-related hazards.  

(c) Provide an approach for optimal decision-making under uncertainty to establish 
optimum management activities of bridges considering sustainability metrics. 

(d) Establish a detailed guideline for optimal sustainability-based management of 
deteriorating bridges. 
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3. SCOPE 
The research work presented herein focuses on water-crossing steel and concrete bridges 
located in Region 6. In Oklahoma, Northern Texas, Arkansas, and Louisiana, intense 
precipitation is frequent and usually leads to riverine flooding and bridge failures. The reported 
research covers sudden hazards (e.g., floods) and gradual deterioration (e.g., corrosion). For 
flood hazard, considered failure mechanisms include hydrodynamic horizontal forces on 
superstructure, debris effect, failure of substructure due to accelerated flood-induced scour, 
and the coupled effects of these mechanisms. The effect of time-dependent scour deterioration 
is considered in evaluating cumulative time-dependent risk of failure the investigated bridge. 
Gradual deterioration due to aggressive environmental conditions such as corrosion is included. 
The approach is applied to a case study located on the Oklahoma-Texas border. The case study 
represents a steel girder bridge with deep foundations. However, the established approach is 
equally applicable to bridges with other structural systems at different locations.  
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4. METHODOLOGY 
This report aims to provide a probabilistic framework for risk analysis of bridges susceptible 
to damage due to floods, flood-induced scours, and corrosive environment. The probability of 
failure under flood-induced loads is predicted considering climate change by utilizing 
downscaled data adopted from global climate models. The proposed framework can establish 
risk profiles which depict the time-dependent performance of the structure. Environmental, 
economic, and social sustainability metrics are integrated into the risk assessment by 
quantifying the monetary values associated with these metrics. The following subsections 
provide an in-depth discussion on the different modules of the framework.  

4.1. Background 
Bridges are under continuous deterioration due to various mechanical and environmental 
stressors. Among the various extreme events which may affect the safety of bridges, hydraulic-
related ones have been identified as the leading cause of bridge failure (2, 3). In the United 
States, statistical analysis estimates that 52% of bridge failures are attributed to hydraulic 
causes (e.g., flood and scour) (4). Hydraulic bridge failures are related to precipitation patterns 
and flood events at the bridge location. In this context, the National Oceanic and Atmospheric 
Administration (NOAA) reports an average increase of 612% in the number of floods in the 
United States since the 1960s and it is expecting a future increase in this percentage (5).  

The increase in flood frequency and intensity, which may be attributed to the climate change, 
is expected to adversely affect the safety of our nation’s bridges, along with devastating 
consequences to our transportation systems and the communities which they serve. As an 
indication of the severity of this problem, the 2015 flooding in Texas and Oklahoma led to at 
least five reported complete or partial bridge failures (6, 7). These 2015 flood events resulted 
in 31 deaths and more than 2.5 billion dollars in economic losses to the region (8). Accordingly, 
bridge design and management approaches should be constructed with the ability to account 
for climate change in the quantification of future flood hazard.  

Flooding can damage the bridge in several ways including overtopping, accelerated scour, 
debris impact, erosion of bridge approaches, and failure due to horizontal direct water pressure. 
Among those, scour is the most difficult deterioration mode from the management viewpoint 
(9). It can occur in any type of soil and undermines the stability of the bridge foundation. 
Accordingly, its effects are generally global, where the failure of one footing may lead to the 
progressive collapse of the whole structure. Moreover, it is very difficult to detect and manage 
since most of its effects are hidden under water. Scour exposes the bridge foundations and 
reduces the buckling resistance of piles, as well as the lateral capacity of the foundations. 
Additionally, bridges subjected to scour become more vulnerable during floods (10) and may 
also be vulnerable under other extreme events such as seismic excitations and traffic overload 
(11, 12). 

In addition to the impact that climate change may have on flood hazard occurrence probability, 
it can also affect the long-term corrosion propagation rate in structural components. For 
instance, (13) and (14) concluded that the long-term increase in temperatures affects the 
material diffusivity and consequently escalates the reinforcement corrosion rate in reinforced 
concrete (RC) structures. In addition, Chaves et al. (15) and Peng et al. (16) conducted 
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probabilistic analysis on corrosion of steel in marine structures considering global warming 
effects. The influence of seawater temperature and microbiological nutrients on corrosion 
propagation was investigated in these studies. The results of both studies highlight the impact 
of climate change on the long-term reliability of marine structures under corrosion 
deterioration. 

Over the past decades, researchers have formulated methodologies to evaluate the scour at 
bridges either deterministically (e.g., (17, 18)) or probabilistically (e.g., (19, 20)), with detailed 
methodologies which can predict the performance of bridges deteriorated by scour under flood-
induced loads. Other studies focused on evaluating the effect of scour on the response of 
bridges under other hazards such as seismic events or traffic overload (e.g., (21-27)). However, 
these studies did not focus on examining the potential influence of climate change on scour- 
or flood-vulnerable bridges. In an attempt to address this issue, Kallias and Imam (28) 
performed a parametric investigation to quantify the change in the failure probability of bridges 
with the change in the mean and standard deviation of the river flow. In another effort, Dong 
and Frangopol (29) presented an approach to quantify the risk of bridge failure and bridge 
resilience under multi-hazard exposure. Their study quantified the bridge risk under 100, 200, 
and 500 years flood hazard, however no future climate prediction was included.  

Due to climate change, the uncertainties in the future projections of precipitation, temperature, 
regional moisture, rainfall, and river streamflow significantly increase, causing the traditional 
methods of design and assessment of bridges based on the 50, 100, or 200 year floods to be 
highly unreliable (30). This unreliability promotes using a more dependable method for future 
climate prediction in order to assess the flood hazard and corrosion deterioration. Using the 
results of global climate modeling and downscaling techniques to derive the regional-scale 
data can help quantifying the flood hazard considering various climate-related parameters (e.g., 
carbon dioxide emission).  

Global climate models (GCMs) are constructed using a general circulation model to simulate 
the atmosphere considering chemical, physical, and biological aspects of the global climate 
system (31, 32). Several GCMs exist such as FIO-ESM, MPI_ESM_LR, CCSM4, MIROC5 
and BNU-ESM (33). The global climate modeling data are in global scale and they should be 
converted to regional scale data in order to study climate patterns associated with a given river 
basin. This can be achieved by running a higher resolution GCM, using boundary conditions 
of surrounding global climate model, or using statistical downscaling methods. The first two 
methods are generally recognized as more complicated and computationally expensive in 
comparison to statistical downscaling methods, which can still achieve results with sufficient 
accuracy (34, 35). GCMs can also be constructed for different scenarios of future greenhouse 
gas (GHG) emission. Due to the presence of several GHG emission scenarios, different global 
climate modeling techniques, and downscaling methods, climate researchers recommend using 
several scenarios, each of which is characterized by its own future GHG emission level, global 
climate model, and downscaling technique to quantify the highest and lowest critical bounds 
for future climate trends (36). 

After obtaining the prediction of future climate trends and precipitation data, different 
hydrological models such as Variable Infiltration Capacity (VIC) (37), RAPID (38), and 
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Riverware (39) can be used to estimate the time-dependent river discharge and quantify the 
future flood hazard. This approach was implemented in (40) to quantify the impact of climate 
change on the Red River basin in Oklahoma. In (40), three GCMS, GHG emission scenarios, 
and downscaling techniques have been implemented leading to 27 different climate scenarios. 
A similar approach has been implemented in a pilot study for Iowa Department of 
Transportation to quantify the increase in streamflow at different bridge locations within the 
state (30). The report indicated that four of the six investigated bridges would be exposed to 
increased frequency of extreme streamflow and would have a higher frequency of overtopping. 

However, the hydrologic modeling using these tools often requires significant effort in 
calibration and executing the analysis, significant experience in hydrologic modeling, and 
specialized software that may not be available to all engineers. Accordingly, applying such 
approaches to bridge risk assessment considerably increases the complexity of the analysis. 
Accordingly, an efficient, yet accurate approach is still needed for bridge risk assessment 
considering climate change, which is the main focus of this report. 

4.2. Significance and Technical Contributions 
This report presents a probabilistic framework for quantifying the effect of climate change on 
time-dependent risk of bridge failure under flood loads, flood-induced scours, and corrosion. 
The proposed approach utilizes the downscaled data adopted from Global Climate Models 
(GCMs) to obtain future temperature and discharge predictions under different climate 
scenarios. Future discharge is used to predict the scour depth and flood loads. The probability 
of failure under combined deterioration is computed using Monte Carlo Simulation (MCS) and 
the risk of bridge failure is quantified by combining the resulting probability of bridge failure 
and the consequences of bridge closure and/or failure. The proposed approach is applied to I-
35 Red River bridge located on the Texas-Oklahoma border. The key technical contributions 
of the presented research can be listed as follows: 

• Predicting future flood and flood-induced scour profiles by employing global climate 
models, and an efficient yet accurate streamflow prediction model 

• Presenting a fully probabilistic framework for quantifying the effect of climate change 
on the bridge failure risk 

• Predicting the long-term risk associated with the failure of the investigated bridge 
considering the exposure to multiple hazards (i.e., flood, flood-induced scour, and 
corrosive environment) and consequences of failure. 

4.3. Climate Modeling 
The greenhouse gas emission has seen a considerable increase through the 20th century. The 
ozone layer depletion attributed to this increase causes noticeable change in climatic conditions 
including global temperature increase, sea level rise, and imbalance in precipitation patterns 
(41, 42). Over the past decade, significant research has been conducted with the main goal of 
predicting future climate conditions in North and Central America (31, 32, 43, 44). These 
studies mainly focused on constructing more precise methods for climate prediction; in 
particular, using the Coupled Model Inter-comparison Project Phase 5 (CMIP5). CMIP5 
provides a framework for coordinated climate change experiments. A main goal of the project 
was to provide projections of future climate change on a near timescale (up to 2035) and long-
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term timescale (up to 2100 and beyond), and to evaluate their accuracy by comparing the 
projections to climate data observed in the short-term past (33).  

The Couple Model Inter-comparison Project Phase 5 (CMIP5) includes more than 50 different 
models that are able to project the past and future climate data. CMIP5 is the newest set of 
coordinated climate model experiments conducted to provide a multi-model understanding of 
carbon cycle and clouds, evaluate climate prediction ability on decadal scales, and to determine 
the reasons that similarly forced climate prediction models lead to various responses (33).  
Different types of climate scenarios vary based on their atmospheric horizontal resolution and 
their model types. These models also take the interaction of various natural effects such as 
oceans, vegetation, and land surfaces into account. It should be noted that these models may 
not provide appropriate results for every location of interest. Therefore, a proper analysis 
should be performed to choose the best models for the location of interest. This is achieved by 
comparing historical results of the adopted climate model to the observed data at the location 
of interest; which can be performed using the risk quantification framework proposed in this 
project.  

Statistical downscaling is a widely used tool to convert the global scale climate data (e.g., 2 
degree scale) to regional scale (e.g., 1/8 or 1/16 degree scale). Several statistical downscaling 
methods such as bias correction and spatial downscaling (BCSD), constructed analogues (CA), 
and daily bias correction constructed analogs (BCCA) are available in the literature (45, 46). 
The BCCA model is a hybrid downscaling method which uses a quantile mapping bias 
correction on large scale data. This method combines the bias correction and daily downscaling 
which are typically used separately in other methods. Due to the hybrid performance of BCCA, 
it was shown to produce more accurate prediction of climate data (46). 

Variability in future GHG emission can be modeled in terms of Representative Concentration 
Pathways (RCPs) (43). Different RCP values consider the change in radiative forcing of GHG 
from pre-industrial times to the 21st century. Radiative forcing can be described as the 
difference between absorbed insolation energy and the reflected radiation energy by the earth. 
Four RCP levels commonly used are RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5, where the 
number represents the range of radiative forcing values in the year 2100 with respect to pre-
industrial years. RCP values are presented with Watts per square meters of earth surface 
(W/m2) and their positive value indicates the increase in the net energy gained by earth, which 
may drive global warming. Accordingly, different RCP values will lead to differences in 
climate prediction regardless of the adopted GCM and downscaling technique. Therefore, 
various scenarios of RCPs should be considered to account for the uncertainties associated 
with the future GHG emission (47).  

Global climate modeling is generally a computationally expensive task. This is performed 
through the general circulation model, which employs Navier–Stokes equations to simulate the 
interaction of different energy sources (e.g., radiation and latent heat) on land, earth, and 
oceans. Fortunately, due to the considerable research activity in climate change over the past 
few decades, meta-data for several GCMs is available in the literature. For instance, the refined 
daily precipitation and temperature data for the time period 1960 to 2100 with BCCA 
downscaling method are available through Downscaled CMIP3 and CMIP5 Climate and 
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Hydrology Projections archive at Brekke et al. (48). The BCCA climate projection covers the 
North American Land-Data Assimilation System which contains contiguous United States plus 
portions of southern Canada and northern Mexico, spanning from 25.125° N to 52.875° N and 
- 124.625° E to -67.000° E. These data sets are used in this study for quantifying the flood 
hazard at the bridge location. 

4.4. Streamflow Prediction 
In general, three types of rainfall-runoff models can be used to draw a relationship between 
climate data and streamflow: metric, conceptual, and physics-based models. While metric 
models use the observed rainfall and streamflow data to characterize the response of a given 
basin, conceptual models use internal processes of the basins to describe the storage and 
movement of water between atmosphere, lithosphere and hydrosphere. In addition, Physics-
based models use numerical simulation of equations of motion to characterize the catchment 
response. Conceptual and physics-based models are generally more involving than metric 
ones; they require specialized software and can be computationally expensive (49). Several 
physics-based hydrological models such as variable infiltration capacity (VIC) (36), RAPID 
(38), and Riverware (39) have been developed in recent decades to estimate the response of a 
basin and the streamflow. In contrast, metric streamflow modeling tools are convenient in 
drawing a dynamic relationship between basin rainfall and streamflow of a river (50).  

This study employs the hybrid conceptual-metric tool IHACRES (51) which uses statistical 
analysis to calibrate a streamflow prediction model and establish a relationship between the 
observed precipitation, temperature, and streamflow data. This relationship can be used to 
estimate the streamflow based on future precipitation and temperature profiles obtained from 
different GCMs. The tool uses a nonlinear module to convert observed rainfall into an effective 
rainfall and a linear module to convert the effective rainfall to streamflow. The model defines 
the effective rainfall, Uk as (52): 

( ) kkk prlcU ][ −= φ  [1] 

with 

1)/11( −−+= kkkk r φτφ  [2] 

and 

))(062.0exp( krwk TTf −= ττ  [3] 

in which c = the mass balance, ϕk = the soil moisture index, l = the soil moisture index 
threshold, p = the nonlinear response term, and rk = the observed rainfall. τk = the drying rate, 
τw = the reference drying rate, f = the temperature modulation, and Tr = the reference 
temperature, and Tk = the drying temperature. The linear module defines the streamflow Qk as: 

δβα −− +−= kkk UQQ 1  [4] 
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where α = storage coefficient, β = fraction of effective rainfall, and δ = the delay between the 
rainfall and streamflow. In addition, a second-order transfer function is used to create a unit 
hydrograph as follows: 

 [5] 

 

where z = the time-step shifter, ai , bi = fitted parameters that are defined based on the type of 
flow (i.e., quick or slow flow). Finally, the efficiency of the model is evaluated by computing 
the coefficient of determination that measures the fit between observed and modeled 
streamflow which is computed as follows: 
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where Qo = observed streamflow value and QM = modeled streamflow value. Generally, R 
values greater than 0.75 are acceptable for big basins (53). 

4.5. Time-Dependent Scour Prediction 
Scour depth is a key variable that significantly affects the time-variant performance of bridges 
subjected to flood conditions. Scour modeling is a process affected by several sources of 
uncertainty (e.g., modeling uncertainty and randomness in soil properties, bridge geometry, 
and river discharge, among others). Local scour at piers is a function of bed material 
characteristics, bed configuration, flow characteristics, fluid properties, and the geometry of 
the pier and footing. In the U.S. bridge design and assessment practice, design specifications 
such as the AASHTO LRFD (2) include recommendations for design of bridge piers against 
scour, which requires this design to be performed on the basis of an approved method for scour 
predictions. These methods are generally empirical equations with parameters calibrated 
mostly using experimental flume tests. These equations provide the maximum expected scour 
depth; the foundations must be placed under this depth to avoid scour failure.  

In this project, the scour depth at piers is calculated as (53) which was established using a set 
of flume tests on different soil conditions. The time-dependent scour prediction process starts 
with identifying the approach velocity Vappr representing the water velocity at the location of 
interest and the pier diameter D. Next, the maximum pier scour at each day Zmax is computed 
as 

635.0
max Re18.0 ×=Z  [7] 

where Re = Reynolds number, given by:  

ν
maxRe

VD×
=  [8] 

in which Vmax = the maximum velocity calculated as 1.5×Vappr and ν = the kinematic viscosity 
of water (i.e., 10-6

 m2/s at 20° Celsius).  
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Several empirical equations can be used for drawing a relationship between the discharge and 
water velocity. However, these equations may not be reliable for all locations and channel 
types. Accordingly, the proposed approach employs a curve fitting technique to establish the 
relationship between velocity and river discharge. The fitting process is based on the observed 
velocity and discharge data, at the location of interest, available through the United State 
Geological Survey database (54).  

Finally, the time-dependent scour depth is calculated using multi flood accumulation model 
proposed in Briaud, et al. (55). This model is suitable for evaluating the time-dependent scour 
depth in cohesive soils where the equilibrium scour may not be reached during a single flood 
event. Figure 1 presents the flowchart of the methodology implemented to the establish time-
dependent scour depth prediction. 

 
Figure 1. Flowchart of time-dependent scour prediction. 



11 

 

4.6. Capacity of Bridge Foundations 
Probabilistic infrastructure management approaches usually involve analytical or numerical 
structural analysis tasks. Although, numerical approaches (e.g., finite element analysis) are 
more appealing due to their higher accuracy, they may not be efficient for performing 
probabilistic analysis. These probabilistic approaches often involve large number of 
simulations that require executing the numerical models iteratively and can be computationally 
expensive. Accordingly, in this project, the structural capacity is modeled using analytical 
models. The adopted formulation for quantifying the capacity of bridge foundation has been 
found to provide reliable results when compared to the results of the experimental 
investigations (56).  

Although the proposed risk assessment approach is equally applicable to different types of 
bridge foundation, this project focuses on the capacity of pile foundations with steel H-piles. 
Lateral and axial limit states are considered to evaluate the behavior of this foundation type 
under horizontal and vertical loads. The ultimate lateral load carrying capacity HL of one pile 
is (56): 

( ) )7.17.2(tan3.0 2 LaaBKKH PL −+= γδξη  [9] 

with 

( ) ( )
1996.2

541.1029.7307.57.2567.0 5.022 eLeLeLa ++++−
=  [10] 

where η = shape factor to account for the non-uniform distribution of earth pressure, Kp = 
passive earth pressure coefficient, K = lateral earth pressure coefficient, δ = interface friction 
angle between the pile and the soil, γ = effective unit weight of soil, a = depth to the point of 
rotation, B = diameter or width of the pile, L = embedded length of pile, and e = eccentricity 
of loading. In this model, shear resistance contribution from both the front soil and side soil is 
considered. In order to evaluate the capacity of each pile in the pile group, a reduction factor 
is applied to the capacity of a single pile (57). An equivalent circular diameter of H-pile is 
computed based on Reese and Van Impe (58). 

The ultimate axial load carrying capacity Rv is expressed as a sum of shaft resistance and toe 
resistance of a pile as: 

psV RRR +=  [11] 

sss AfR =  [12] 

ppp AqR =  [13] 

where, Rs = the shaft resistance and Rp = the toe resistance of the piles. fs = unit shaft resistance 
over the pile surface area, As = pile shaft surface area, qp = unit toe resistance over the pile toe 
area, and Ap = pile toe area.  
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4.7. Bridge Risk Analysis 
In this approach, bridge piers are subjected to traffic live loads and dead loads computed using 
the AASHTO LRFD Bridge Design Specifications (59). The adopted HL-93 live load model 
consists of the worst combination of the design truck plus design lane load or a design tandem 
plus design lane load. In addition, flood-induced lateral load FL acting on bridge pier is 
calculated as (60): 

ApFL ×=  [14] 

With 

2

2 apprD V
g

Cp γ
=

 [15] 

where A = area of accumulated debris, p = water pressure on piers, CD = drag coefficient, and 
Vappr = velocity of stream flow. 

The load effects and load carrying capacity, performance functions are defined as: 

)()()( tFtRtG LLL −=  [16] 

)()()( tFtRtG VVV −=  [17] 

where GL(t) = lateral performance functions at time t, GV(t) = the vertical performance 
functions at time t, HL(t) = respective time-variant lateral capacity, RV(t) = the respective time-
variant vertical capacity, FL(t) = respective lateral load effects at time t, and FV(t) = the 
respective vertical load effects at time t. These performance functions are used to evaluate the 
probability of failure and risk due to flood and flood-induced scour. 

In order to assess the failure probability of a bridge foundation considering the time-variant 
scour under climate change, Monte Carlo Simulation (MCS) of the scour model, given by 
equation 7, is conducted in MATLAB environment (61). This process uses the climate-based 
generated streamflow hydrographs and is used to draw samples from the scour depth at any 
time instance in the future given the climate scenario (i.e., for a certain GCM, downscaling 
method, and RCP value). The probability distribution function (PDF) of the time-variant lateral 
and axial capacity of the piles (given by Equations 9 and 11, respectively) can be obtained 
using the simulation process. Next, the PDF of the time-variant flood loads are obtained from 
the generated climate-based river streamflow. 

The PDFs of the time-variant capacity and load effects are next used within the MCS to obtain 
the point-in-time probability of failure of the bridge pier as: 

]0)([)( <= tganyPtP if  [18] 

where Pf (t) = point in time probability of failure and gi (t) = the I th performance function. The 
failure probability is computed as the failure probability of a system with failure modes 
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connected in series. The cumulative annual probability of failure, representing the cumulative 
distribution function (CDF) of the time to failure, is computed as (21): 

( ) ( )∑ ∏
= =

− 







−=
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j
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1 1
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where TDP(y) = cumulative annual probability of failure and Pf = point-in-time annual failure 
probability of the piles.  The risk of structural failure is established based on evaluated 
consequences as: 

( ) ( ) CyTDPtRisk ×=  [20] 

where Risk (t) = the time-dependent risk, C = the monetary value associated with bridge failure 
and calculated considering rebuilding cost Creb, running cost Crun, and time loss Ctl due to the 
bridge failure and road closure. This approach provides a mechanism for integrating 
sustainability metrics by computing the monetary value associated with social and 
environmental impacts. All of the costs are calculated in terms of U.S. dollars (USD) as (62) 

tlrunreb CCCC ++=  [21] 

where the rebuilding cost (Creb) is estimated as a function of bridge area considering the length 
and width of the bridge. In some cases, only some parts of the structure need to be repaired or 
replaced, therefore, this consequence is also known as repair cost and is calculated as follows: 

bbrcreb LWCC =  [22] 

in which Creb = rebuilding cost ($) per unit area, Wb = bridge width (m), and Lb = bridge length 
(m). The running cost represents the additional expenses encountered through vehicle 
operation on the detour due to bridge closure and it is calculated as:  

DADTdCC rvrun =  [23] 

where Crv = average cost of running vehicle ($/km), D = detour length (km), ADT = average 
daily traffic affected by bridge closure (vehicles/day), and d = duration of detour (days). 

The time loss cost Ctl represents the loss of time per passenger for traveling through the detour. 
This cost is calculated as: 

S
DADTdTCTOCCtl 








+






 −=

100100
1 21  [24] 

in which C1 = value of time per adult ($/hr.), C2 = value of time for truck ($/hr.), S = average 
detour speed (km/hr.), T = average daily truck traffic (%), and O = occupancy rate. The 
flowchart of the risk analysis framework proposed in this project is shown in Figure 2.  

The proposed framework contains four main modules: (a) flood prediction using climate 
modeling, (b) time-dependent scour prediction, (c) structural performance prediction 
considering floods and flood-induced scour, and (d) estimation of failure probability, failure 
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consequences, and time-dependent risk profile. As the first step of this framework, suitable 
global climate models for the region of interest should be selected along with associated 
downscaled precipitation and temperature profiles. Next, the discharge at the bridge location 
should be calculated using streamflow modeling techniques. This is performed herein through 
a hybrid conceptual-metric model which uses the historical records to establish a relationship 
between river discharge and precipitation and temperature patterns. The resulting river 
discharge profiles are then used to assess the scour propagation and structural performance. 
Next, the probability of bridge failure is computed using probabilistic simulations of the bridge 
performance function in terms of the resistance and load effects. The last module of this 
framework is focused on estimating the consequences of bridge failure and generating the time-
dependent risk profile. As depicted in Figure 2, the proposed framework can identify the risk 
of bridge failure considering climate change. In this report, the framework has been applied to 
a steel girder bridge, However, the framework can be applied to different bridges with various 
soil properties (clay, sand, etc.), scour types (pier scour, contraction scour, etc.), and structural 
systems. 
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Figure 2. Flowchart of the performed probabilistic analysis. 

4.8. Time-Dependent Marine Corrosion 
Evaluating the long-term behavior of structures subjected to a corrosive environment is highly 
dependent on estimating the material loss. Due to the significant uncertainties associated with 
the factors associated with the time-dependent corrosion loss models, predicting the residual 
capacity of structural components under corrosion should be performed probabilistically. 

In addition, adopting historical climate records may lead to errors in characterizing the 
corrosion loss prediction parameters (e.g., water temperature). Therefore, the proper selection 
of corrosion model parameters should consider uncertainties and long-term climate change. In 
this section, the immersion corrosion model presented by Melchers (63, 64) is used to model 
corrosion loss in steel structures. The long-term effect of elevated nutrient concentration 
considering climate change can be addressed using this model. 
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The historical water and air temperature, dissolved inorganic nitrogen (DIN), and the predicted 
air temperature profiles from GCMs are the inputs of this corrosion prediction model. Since 
climate modeling only provides air temperature prediction, water temperature profiles are 
established based on a curve fitting technique that can draw a relationship between the air and 
water temperatures. In addition, distribution fitting is employed to obtain the best probability 
density function (PDF) which fits the DIN data adopted from USGS water data database (54). 
Random DIN values are then generated through random sampling techniques to conduct the 
probabilistic simulation. The resulting DIN values along with the predicted future water 
temperature profiles are then used to estimate the y-intercept at time zero (Cs) and the slope of 
the long-term corrosion rate (Rs) of the adopted corrosion loss prediction model described by 
Melchers (64). This process results in time-dependent corrosion loss curves considering the 
annual variation of temperature due to climate change. The Flowchart of the proposed 
corrosion prediction approach is shown in Figure 3. 

 
Figure 3. Flowchart of corrosion loss prediction. 

4.9. Time-Dependent Fresh Water Corrosion 
The previously discussed immersion corrosion approach is applicable to bridges located in a 
marine environment, this corrosion model may not accurately predict the corrosion loss for the 
freshwater cases. Eurocode 3, part 5 has presented the corrosion loss prediction data for 
freshwater cases. These values are adopted and presented through Table 1. 
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Table 1. Euro code recommended value for the corrosion loss of piles in fresh water. 

Required Design Working Life 5 years 25 years 50 years 75 years 100 years 

Common fresh water (e.g. rivers) in 
the zone of high attack 0.15 mm 0.55 mm 0.9 mm 1.15 mm 1.4 mm 

Very polluted Freshwater (e.g. 
sewage) in the zone of high attack 0.3 mm 1.3 mm 2.3 mm 3.3 mm 4.3 mm 

Seawater in temperate climate in 
the zone of high attack (low water 

and splash zones) 
0.55 mm 1.9 mm 3.75 mm 5.6 mm 7.5 mm 

Seawater in temperate climate in 
the zone permanent immersion or in 

the intertidal zones 
0.25 mm 0.9 mm 1.75 mm 2.6 mm 3.5 mm 

4.10. Combined Effects of Flood, Flood-Induced Scour, and Corrosion 
The time-dependent risk profile under flood and flood-induced scour considering climate 
change effects can be achieved using the proposed flowchart in Figure 3. Adopting global 
climate models and streamflow modeling, time-dependent scour prediction, structural 
performance evaluation and evaluating the consequences of bridge failure are among the most 
important steps of this probabilistic framework. Figure 4 visualizes this framework. 

 
Figure 4. Visualized framework under flood and flood-induced scour. 

The effect of corrosion propagation can be also integrated in this framework. This can be 
achieved by either of the marine corrosion or freshwater corrosion approaches. In the case of 
marine corrosion, the effects of climate change on future temperature prediction can be also 
included. A visualized framework for risk assessment under flood, flood-induced scour, and 
corrosion deterioration considering climate change effects is presented in Figure 5. 
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Figure 5. Visualized framework under flood, flood-induced scour, and marine corrosion. 

4.11. Optimization of Bridge Management Activities 
The proposed framework can be also expanded to a risk-based probabilistic framework for 
optimizing the maintenance planning of bridges. Such framework can be used to establish the 
optimum maintenance and retrofit activities which can extend the service life and reduce the 
failure risk with lowest possible life-cycle cost. Such approach is capable of performing the 
optimization for bridges under flood, flood-induced scour, corrosive environment, and 
earthquake hazards. The process is performed through four main modules: (a) flood and 
temperature prediction using climate modeling, (b) structural performance prediction 
considering floods, flood-induced scour, corrosion, and earthquake hazards in the super- and 
sub-structures, (c) consequences and risk estimation, and (d) maintenance optimization and 
management strategies.  

The last step of this framework is focused on optimization of the of the management activities 
using the established risk profiles of the investigated bridge and the available maintenance, 
retrofit, or repair procedures. In this step, various intervention options for the predicted damage 
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states should be analyzed with their respective costs. Next, the management objectives and 
constraints are defined and the optimization is performed to establish the optimum 
management plans. A layout of such optimization framework is presented in Figure 6. An 
approach for identifying optimum repair, maintenance, and/or retrofit activities required to 
improve the sustainability of bridges constructed in a multi-hazard environment is presented. 
The procedure of this framework starts with quantifying the increase in the bridge failure risk 
during flood events considering the expected change in climate conditions. Climate scenarios 
extracted from global climate models that are appropriate for the location of interest, along 
with different carbon emission scenarios, are used to predict future climate trends. The 
predicted temperature, streamflow, and time-dependent scour depths based on these climate 
scenarios are then integrated in a probabilistic framework to perform multi-hazard risk analysis 
considering flood, scour, and corrosion hazards. Probabilistic simulation enables establishing 
a multi-hazard risk profile for the structure of interest. Probabilistic simulations also assist in 
accounting for the uncertainties associated with hazard occurrence, load effects, and structural 
resistance. Multi-objective optimization can be used next to establish the best intervention 
schedules required to fulfill the management needs.   

The developed framework of this study could be implemented by bridge officials to manage 
the existing stock of deteriorating bridges while reduces the associated life-cycle cost and 
maintain the desired performance level throughout the service life of bridges. In particular, the 
proposed framework can provide a better understanding of the system performance under 
multiple hazards. Accordingly, bridge managers can take corrective actions to prevent 
structural failures under extreme events. This will eventually improve the durability and extend 
the service life of existing bridge infrastructure and subsequently reduce the economic and 
social consequences of the bridge failure. In addition, the results of this study can be used for 
real-time decision-making for traffic control during natural disasters or disaster evacuation 
operations. Therefore, using the results of this project, a better budget allocation and significant 
societal, environmental, and economic benefits can be achieved and unnecessary expenditures 
on infrastructure management can be avoided. 
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Figure 6. Proposed framework for maintenance optimization of the bridges. 

 

  



21 

 

5. FINDINGS 
The presented framework is illustrated on the South Bound I-35 Bridge over the Red River. 
The bridge serving a major freight route linking Southern and Northern US states is located on 
the Oklahoma-Texas border. During the past few decades, the Red River has experienced 
several heavy floods which caused significant damage to surrounding areas. The most recent 
severe flood occurred in May 2015, in which the water reached the level of the superstructure. 
In addition, several other bridges along the Red River basin experienced partial or total failure 
during this flood (6, 7). The I-35 bridge represents an ideal example due to its strategic location 
on a major freight route, the aggressiveness of flooding conditions on the Red River, the large 
daily traffic utilizing the bridge, and the lack of alternative routes in case of bridge failure. 

5.1. Case Study 
This bridge accommodates an average daily traffic of 19,800 vehicles with 36% average daily 
truck traffic (67). The I-35 bridge superstructure consists of five plate girders supporting a 
reinforced concrete deck, while the substructure is composed of multiple piers supported by 
steel H-piles (Figure 7a). The bridge is 118.3 m long and 9.5 m wide, with two traffic lanes. 
The bridge has 11 piers and 32.3 m long spans. Since not all the characteristics of the bridge 
could be obtained, some assumptions related to dimensions were placed. These include the 
thickness of the concrete deck (35 cm) and the width of the bridge piers (1.2 m). Based on the 
original construction drawings, the riverbed level is considered to be 10 m below the deck. In 
this study, the failure risk analysis has been performed considering a single pier. However, 
system analysis covering all the piers can be performed using series-system reliability 
formulation. A layout of the bridge pier with pile configuration is shown in Figures 7b and 7c. 
The studied bridge pier has two groups of 9 steel H-piles (HP 12x53 steel piles), each is 11.2 
m long. Piles are aligned such that their strong axis is perpendicular to the direction of 
streamflow. 

 
Figure 7. Layout of bridge pier with pile configuration (a) piers and superstructure (b) plan view of pile caps (c) side 
view of pile caps and H-piles. 
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5.1.1. Climate Modeling and Flood Prediction 
The downscaled climate data for MPI_ESM_LR, CCSM4, and MIROC5 global climate 
models downscaled using BCCA method with RCP 2.6, RCP 4.5, and RCP 8.5 are adopted 
from (48). The precipitation and temperature during the time window ranging from 1960 to 
2100 is utilized. These selected GCMs were shown to provide reliable climate predictions for 
the location of interest (40). The combination of three GCMs and three RCP values results in 
nine different climate data sets. Table 2 shows the detailed information on the adopted climate 
scenarios. The precipitation and temperature datasets are next used for streamflow prediction 
using IHACRES (51).  

For the I-35 Bridge, the observed precipitation, temperature, and streamflow time-histories 
corresponding to the period of 2000-2015 are imported to the IHACRES for evaluating the 
accuracy of the prediction model. The observed streamflow datasets are adopted from the 
United State Geological Survey station on the Red River near Gainesville, TX (USGS ID: 
07316000) (54) located 300 m upstream of the bridge. The observed temperature and 
precipitation data are acquired from NOAA dataset (5) for the same time period. With an area 
of almost 70,000 km2 and 2200 km in length, the climate data within the Red River basin is 
subject to considerable variability due to the large basin size. Accordingly, the observed 
temperature and precipitation time-histories for 30 stations located throughout the basin are 
analyzed and their average time-histories are used as the input data for the river flow prediction. 

Table 2. Adopted climate models for the investigated I-35 bridge. 

Modeling Center (or Group) Institute 
ID Model Name RCP 

(W/m^2) Resolutions Datasets 

National Center for Atmospheric 
Research NCAR CCSM4 

2.6 
4.5 
8.5 

1/8 degree 
 

Max. temp. 
Min. temp. 

Precipitation 
Atmosphere and Ocean Research 
Institute (The University of 
Tokyo), National Institute for 
Environmental Studies, and Japan 
Agency for Marine-Earth Science 
and Technology 

MIROC MIROC5 
2.6 
4.5 
8.5 

1/8 degree 
Max. temp. 
Min. temp. 

Precipitation 

Max-Planck-Institut für 
Meteorologie (Max Planck 
Institute for Meteorology) 

MPI-M MPI-ESM-LR 
2.6 
4.5 
8.5 

1/8 degree 
Max. temp. 
Min. temp. 

Precipitation 

 

Selection of the calibration period for climate prediction is related to the application of the 
model, if the model applies to flood peaks, then the calibration period should contain enough 
flood peaks to attain proper model calibration. In case of humid catchments, a two- or three-
year calibration period is appropriate, while in arid or semi-arid areas a longer calibration 
period is usually needed (49). For the location of interest in this study, a five-year calibration 
period from September 2004 to August 2009 is selected. The linear and nonlinear modules are 
used to draw a relationship between the observed rainfall and streamflow. The predicted data 
has a monthly R2 value of 0.82 which meets the minimum recommended values (51). Figure 8 
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shows a comparison between observed and modeled streamflow data from 2000 to 2016. As 
shown, a reasonable agreement between the observed and predicted data is achieved. 

 
Figure 8. A comparison between observed and the modeled streamflow data (calibration period Sep. 2004 to August 
2008). 

After the calibration process, the downscaled temperature and precipitation datasets for the 
analyzed 30 stations are used and their average is calculated. These average values associated 
with each of the nine climate scenarios (defined by different combinations of GCMs and RCPs) 
are used for predicting the streamflow. Next, the streamflow time-history associated with each 
climate scenario for the period of 1960 to 2099 is established using the achieved calibration 
parameters. Figures 9a, b, and c show the average precipitation, average temperature, and the 
predicted streamflow time series for CCSM4 model with RCP 2.6, respectively.  

The analysis of predicted streamflow resulting from the considered climate models for the 
location of interest indicates that although the mean annual discharge during the period 1960 
to 2100 is decreasing, the maximum annual discharge shows a steady increase. Figure 10a 
shows the annual discharge versus time for all of the adopted GCMs; additionally, it shows the 
mean and maximum annual discharge values, respectively. Figure 10b shows only the annual 
maximum and mean discharge in addition to the linear fit of these two profiles. The figure 
shows a clear trend indicating a decrease in the overall annual mean discharge. However, as 
indicated by the linear fit of the discharge peaks, the chance of having larger precipitation 
events is increasing. This highlights the importance of proper climate modeling during bridge 
risk assessment. 
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Figure 9. Average daily (a) precipitation, (b) temperature, and (c) streamflow based on CCSM4 model with RCP 2.6. 
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Figure 10. (a) Average streamflow associated with all of the adopted GCMs (b) the trend lines of maximum and average 
annual streamflow. 

5.1.2. Scour Prediction and Risk Assessment 
Scour modeling for each streamflow time-series, corresponding to a given climate scenario, is 
performed using Equation 7. This model requires the velocity as an input parameter. In order 
to establish a relationship between the velocity and discharge at the bridge location, a curve 
fitting technique using MATLAB curve fitting toolbox (61) is utilized in this project. Figure 
11 shows the results of this process.  
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Figure 11. Fitting curve for discharge and velocity. 

Time-dependent scour depth associated with different climate scenarios is then established. 
Figure 12 shows the time-dependent scour depth profiles for all climate scenarios. As shown, 
there is a considerable variability in the scour depths among the considered scenarios. The 
results depict up to 30% difference in final scour depth between different climate datasets. This 
highlights the significant uncertainty associated with the scour prediction considering climate 
change and justifies the need for probabilistic analysis.  

 
Figure 12. Time-dependent scour depth results based on different GCMs. 

In order to consider this variability in the risk assessment, Monte Carlo simulation with 
100,000 samples is used to draw samples from the time-variant scour depth at the investigated 
bridge pier. Next, each sample from the distribution is used to perform the time-dependent 
scour depth prediction. The internal friction angle of soil is considered as a random variable 
that follows a normal distribution with mean value of 36° and standard deviation of 1.33 (68). 
The unit weight of saturated soil is assumed 124 lbs /ft3, and coefficient of lateral earth pressure 
is assumed 0.4. In addition to soil parameters, the streamflow is treated as a random variable. 
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A probabilistic investigation is performed in order to establish the appropriate distribution 
parameters of the peak annual flow at the location of interest. A peak extraction analysis 
performed using MATLAB (61) is carried out to isolate the peaks within each year. The best 
distribution type that fits the annual peaks is found as shown in Figure 13. In this specific case 
study, the exponential distribution fits best the annual peak data. The predicted streamflow of 
each year is used to predict the parameter of the exponential distribution and the Monte Carlo 
simulation is used to find the annual histograms of the time-variant scour depth. The 
probabilistic scour depth is next used to calculate probability of failure using the performance 
functions given by Equations 16 and 17.  

 
Figure 13. Probability plots of annual peak streamflow using (a) Lognormal (b) Rayleigh (c) Normal (d) exponential 
distributions. 

Axial and vertical load capacity of the piles are calculated using Equations 11 and 12. The 
shape factors η and ξ associated with the H-piles are assumed 1.0 and 2.0, respectively (58). 
Figure 14 shows the probabilistic time-variant capacity of the piles in lateral and axial 
directions. In addition, the PDFs of resistance at the years 2000, 2030, and 2060 are shown in 
the figure. It is shown that reduction in the lateral capacity reaches 50% at the end of the service 
life while the maximum reduction in axial capacity is 30%. Vertical loads from traffic and dead 
load of the structure are calculated based on AASHTO LRFD Specifications (59) considering 
HL-93 loading to obtain maximum vertical forces on the bridge supports. Lateral load due to 
discharge is calculated using Equation 14. With the probabilistic load and capacity terms in 
the limit state functions identified, the annual probability of failure can be obtained using the 
Monte Carlo simulation results. 
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Figure 14. Time variant resistance of piles in (a) axial (b) lateral directions. 

After establishing the failure probability profiles, consequences due to bridge failure are 
evaluated considering repair cost, running cost, and time loss cost, calculated using Equations 
2),(2), and(2), respectively. The failure risk is then computed using Equation 20. All the 
parameters used in calculating the consequences are considered random variables, except the 
detour length (D) and the duration of the detour (d). Table 3 presents the values of deterministic 
parameters and the descriptors of randomly distributed parameters used in calculating the 
failure risk.  

In this study, it is assumed that the effect of inflation negates the money interest; accordingly, 
the discount rate of money is assumed to be zero. The detour length is derived by analysis of 
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the transportation network to which the bridge belongs. The area on the I-35 before and after 
the bridge is analyzed to identify alternative routes in case of bridge failure. The analysis 
indicates that the average travel time is 25 minutes with the intact bridge, while the detour will 
result in an average of 60 minutes travel time in case of bridge failure. 

Table 3. Parameters for evaluation of rebuilding, running, and time-loss costs. 

Parameter Notation Value Probabilistic Parameters References 

Rebuilding cost 
($/m2) Crc $894 / m2 Lognormal, COV= 0.2 Deco & Frangopol 

(21) 
Average cost of 
running vehicle 

($/km) 
Crv $0.08 / km Lognormal, COV = 0.2 Deco & Frangopol 

(21) 

Detour Length D 90 km Deterministic 
Estimated based on 
analysis of traffic 

network 
Average Daily 

Traffic ADT 19,800 vehicles/day Lognormal, COV = 0.2 FHWA (67) 

Duration of 
detour d 182.5 days ( 6 months ) Deterministic Assumed 

Cost of time per 
adult ($/hr.) C1 $22.82 Lognormal, COV = 0.15 Deco & Frangopol 

(21) 
Cost of time for 

truck ($/hr.) C2 $26.97 Lognormal, COV = 0.15 Deco & Frangopol 
(21) 

Average detour 
speed (km/hr.) S 64 Lognormal, COV = 0.15 Deco & Frangopol 

(21) 
Average daily 
truck traffic T 36% Lognormal, COV = 0.2 FHWA (67) 

Occupancy rate O 1.5 adults Lognormal, COV = 0.15 Deco & Frangopol 
(21) 

 

In order to compute the failure probability and risk, Monte Carlo simulation with 100,000 
samples is adopted. Figure 15a shows the mean point in time probabilities of failure for all 
climate models while Figure 15b shows the mean, mean plus one standard deviation, and mean 
minus one standard deviation of time-dependent risk profile. 
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Figure 15. The mean value of (a) point in time probability of failure (b) time-dependent risk based on all climate 
models. 

5.2. Impact of Climate Change on Bridge Failure Risk 
Since one of the main goals of the project is to evaluate the impact of climate change on the 
risk profile of a given bridge, the risk profile resulting from the proposed approach considering 
climate modeling is compared to the risk resulting from traditional approaches based on 
historical data. The streamflow data of the past 50 years (1960-2010) at the location of interest 
are extracted from the USGS database and used to generate future flood prediction. Two 
methods have been used for flood prediction with no consideration of climate change; (a) a 
traditional method where the historic 50-year record is repeated throughout the service life, 
and (b) a flood prediction based on the Q100-Q500 approach developed by (19). The Q100-
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Q500 approach uses the estimated 100-year and 500-year floods (i.e. Q100 and Q500) to 
randomly generate daily streamflow data. Figures 16a and b shows the time-dependent scour 
depth and mean risk profiles generated using the 50-year historic data, the Q100-Q500 
approach, and the mean of all climate models. It can be seen that there is a considerable 
difference between the three risk profiles. As shown, the 50-year risk profile tends to 
underestimate the risk compared to the other two approaches; while the Q100-Q500 predicted, 
at the end of the service life, approximately double the risk value established using proper 
climate modeling. 

 

 
Figure 16. Comparison of time-dependent (a) scour depth (b) risk profile based on climate modeling, 50-year historical 
data, and Q100-Q500 approach. 

5.3. Combined Effects of Flood, Scour, and Marine Corrosion 
The previously discussed immersion corrosion approach is applied to the bridge analyzed in 
this report to quantify the increase of failure risk under corrosion. Since the investigated bridge 
is not located in a marine environment, this corrosion model may not accurately predict the 
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corrosion loss for the investigated location. The purpose of this study is to illustrate the 
application of such model in investigating the potential impacts of climate change.  

Historic water and temperature records are adopted from the USGS database. The curve fitting 
toolbox of MATLAB software (61) is next used to draw a relationship between water and air 
temperature data. The curve fitting results are shown in Figure 17.  

 
Figure 17. Air and water temperature relationship. 

Historical records of dissolved inorganic nitrogen are also adopted from USGS water quality 
records and their associated probabilistic distribution was obtained using MATLAB 
distribution fitting tool. The exponential distribution was found to provide the best fit for the 
DIN historical data. Figure 18 shows the associated histogram and the exponential fit. The 
adopted temperature profiles corresponding to the nine climate scenarios are next integrated 
into the presented corrosion prediction approach to generate the time-dependent corrosion loss 
considering climate change. 

 
Figure 18. Distribution fitting of DIN records. 

In traditional climate projection methods used for structural assessment purposes, future 
climate behavior is assumed to follow the recorded historic patterns. In order to compare 
corrosion losses generated from climate modeling to those based on historical temperature 
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records, the fitted distribution of the recoded water temperature was used to generate the future 
temperature trends. The fitted distribution of the recorded water temperature data is shown in 
Figure 19. The recorded water temperature was found to follow a generalized extreme value 
distribution.   

 
Figure 19. Distribution fitting of water temperature. 

The results of the time-dependent corrosion loss predicted based on the climate modeling and 
the historical records are depicted in Figure 20. It can be seen that the results generated based 
on the mean of all considered climate scenarios slightly varies from the one generated based 
on historical data. This difference reaches up to 10% at the year 2100.   

The time-dependent risk of failure is finally calculated based on the generated consequences 
and time-dependent probability of failure. Figure 21 shows the resulting time-dependent risk 
profiles for the investigated bridge considering the combined effects of flood, flood-induced 
scour, and marine corrosion. 

 
Figure 20. Comparison of time-dependent corrosion loss generated based on GCMs and historical data. 
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Figure 21. The time-dependent risk considering the combined effects of flood, flood-induced scour, and marine 
corrosion. 

5.4. Combined Effects of Flood, Scour, and Fresh Water Corrosion 
As previously discussed, the marine corrosion prediction is not applicable to the cases with 
fresh water. The Eurocode freshwater corrosion approach is used to establish a time-dependent 
corrosion loss relationship. This relationship has been produced through a linear fit based on 
the results of common fresh water in the high zone attack. Figure 22 shows the results of this 
linear fit. 

 
Figure 22. Freshwater time-dependent corrosion loss prediction. 

The proposed relationship is then integrated into the analysis of the investigated bridge and the 
time-dependent risk profile is generated. Figure 23 shows a comparison between the results 
generated for the case when the bridge is only facing the flood and scour and for the case when 
it faces the flood, flood-induced scour and freshwater corrosion. It can be seen that in the case 
considering the freshwater corrosion, the risk is increased dramatically.  
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Figure 23. Time-dependent risk profiles considering flood and scour versus flood, scour and freshwater corrosion. 

5.5. Optimal Maintenance Planning 
After establishing the risk profile, a management plan should be developed with the goal of 
minimizing the risk or failure probability of the bridge. Other management objectives can also 
be considered including minimizing the life-cycle cost and extending the service life, among 
others. Single or multi-objective optimization can be used to establish these management plans. 
In this case study, a single-objective optimization procedure is presented with the goal of 
determining the optimal maintenance time of the bridge foundations. The maintenance action 
is defined herein as the replacement of the bridge foundation. Accordingly, the performance 
of the bridge foundation is restored to initial condition after the maintenance. The optimization 
process established the optimal time of foundation replacement that minimizes the maximum 
life-cycle cumulative probability of failure. The replacement is performed only one time during 
the service life of the bridge. The optimization problem is formulated as:  

Given: TDP(y), tsl [25] 

Find: tmain [26] 

To minimize: maximum life-cycle cumulative probability of failure (TDPmax) [27]  

where TDP(y), tsl, and  tmain are cumulative annual probability of failure, service life, and time 
of maintenance action, respectively. Genetic algorithms employed through the Global 
Optimization Toolbox of MATLAB (61) have been used to solve this optimization problem. 
Integer genetic algorithm has been implemented; accordingly, the solver attempts to minimize 
a penalty function rather than the fitness function. The penalty function, which includes a term 
for infeasibility, is combined with binary tournament selection to select individuals for 
subsequent generations (61). Figure 24 shows the mean and best penalty values for each 
generation. The optimum time for foundation replacement is at the year 2032. Figure 25 
compares the annual probability of failure for the optimal maintenance plan to non-optimal 
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plans performed at different times along the service life. As shown, the optimum maintenance 
plan succeeds in predicting the lowest maximum annual probability of failure value.  

 
Figure 24. Mean and best penalty values versus generations. 

 
Figure 25. Comparison of annual cumulative probability of failure based on different maintenance plans. 

In a similar manner, more maintenance options can be integrated into the optimization process, 
including those associated with other bridge components such as the girders and deck (69). In 
addition, multi-objective optimization can be defined to simultaneously minimize the failure 
probability while minimizing the life-cycle cost (70, 71). 
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6. CONCLUSIONS 
This research project presented a risk-based probabilistic framework for optimizing the 
management activities of bridges susceptible to damage due to sudden hazards and gradual 
deteriorative effects. The framework predicts the risk of failure considering the effects of 
climate change using downscaled data of global climate models. The downscaled precipitation 
and temperature Climate data are adopted from CMIP5 archive for the location of interest 
during the time span of 1960 to 2100. The IHACRES statistical model is used to convert the 
climate data to streamflow hydrographs at the bridge location. Time-dependent scour depth is 
quantified and its effect on the axial and lateral capacity of the bridge foundation is computed. 
The annual point-in-time failure probability of the bridge due to flood-induced loads is used to 
predict the cumulative failure probability profiles of the bridge. After evaluating the 
consequences associated with bridge failure, the time variant bridge risk profile is established. 
In addition, a risk-based probabilistic framework for optimizing the management activities of 
bridges susceptible to damage due to floods, flood-induced scour, and corrosive environment 
is presented in this report. Two cases of marine corrosion and freshwater corrosions are 
examined in this study. The following conclusions are drawn:   
• The results indicate that the time-variant corrosion losses have low sensitivity to the 

adopted climate scenario. However, scour modeling is highly dependent on the climate 
model and its parameters. Traditional methods for streamflow and corrosion loss prediction 
based on historic data underestimate or over-predict the risk of bridge failure depending on 
the assumptions used to establish the future streamflow data. In contrast, the proposed 
approach based on climate modeling provides a rational prediction of future risk while 
properly accounting for the effect of future climate change. 

• The analysis of predicted streamflow considering climate data for the location of interest 
indicates that although the mean annual discharge had a general decreasing trend, the 
maximum annual discharge (i.e., flow peaks) shows a steady increase. This highlights the 
importance of proper climate modeling during bridge risk assessment. 

• The time-variant scour depth significantly depends on the adopted climate scenarios. A 
variation of 29% in the final scour depth predicted using the different climate scenarios has 
been observed at the studied location. Accordingly, a probabilistic approach considering 
all potential scenarios is necessary to properly quantify the risk of bridge failure due to 
flood and flood-induced scour hazards. 

• The MPI-ESM-LR model predicts the most aggressive time-dependent scour depth profile 
while MIROC5 model predicts the smallest scour depth profiles. In addition, the RCP 2.6 
associated with each model predicts the biggest scour depth, while the 8.5 RCP values 
predict the smallest scour depth profiles. 
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7. RECOMMENDATIONS 
• The proposed optimization framework can establish the optimum maintenance 

solutions which can minimize the failure probability of the bridge under investigation. 
The use of such detailed analysis approaches is recommended over traditional bridge 
management tools relying on simplified assumptions on bridge condition states.  

• Traditional methods for streamflow prediction based on historic data can underestimate 
or over-predict the risk of bridge failure under flood and flood-induced scour depending 
on the assumptions used to establish the future streamflow data. In contrast, the 
proposed probabilistic approach based on climate models provides a rational prediction 
of future risk while properly accounting for uncertainties associated with future climate 
and flood conditions. It is recommended to perform such analysis for new bridge 
construction or for establishing management plans for existing bridges.  

• Selection of appropriate climate scenarios should be based on a detailed comparison of 
their past predictions with the historical records. 

• The framework presented in this study can be easily applied to other bridge cases. This 
can be achieved by adjusting the foundation parameters, failure modes, and updating 
the location for the climate modeling module.  
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